Marine Life Protection Act Initiative

Marine Protected Area Modeling Evaluation

Satie Airame, Science and Planning Advisor • California MLPA Initiative

Presentation to the MLPA Master Plan Science Advisory Team January 23, 2009 • Conference call

Description of Models

- Use spatial data on habitat, fishery effort, and proposed marine protected area (MPA) locations and regulations
- Simulate population dynamics of fished species
- Generate predicted spatial distributions of conservation value and economic return for each MPA proposal

Key Changes to Models

- Two-dimensional
- Run for approximately10 representative species from southern California
- Improved larval dispersal kernel
- Spatial and temporal variability in larval dispersal
- Fleet dynamics based on fishery data

Model Elements

- Larval dispersal across patches driven by ocean currents, pelagic larval duration, and spawning season
- Larval settlement regulated to suitable habitat
- Post-settlement density-dependent mortality
- Growth and survival dynamics of the resident (adult) population
- Reproductive output increasing with adult size
- Adult movement (e.g., home ranges)
- Harvest in areas outside of MPAs

Summary of Assumptions¹

- Larval dispersal: Adults spawn larvae within each habitat cell, potential movement estimated from ROMS
- Larval settlement: Limited by habitat availability, post-settlement mortality depends on intra-cohort density
- Growth and survival: Based on published data, egg production proportional to fish weight

¹For complete list of assumptions, see evaluation methods document, Chapter 9, Appendix 1.

Summary of Assumptions¹ (cont.)

- Adult movement: Move within home ranges^{2,3}
 and to new home ranges³
- Fishing pressure: Fishing effort equal across space, redistributed after MPAs established²; fishers maximize profits³

¹For complete list of assumptions, see evaluation methods document, Chapter 9, Appendix 1.

²University of California, Davis model

³University of California, Santa Barbara model

Model Outputs

- Conservation Value for ~10 species
 - Biomass^{1,2}
 - Larval supply¹ (a proxy measure of population sustainability)
- Economic Return for ~10 species
 - Fish yield^{1,2}
 - Fisheries profit²

¹University of California, Davis model ²University of California, Santa Barbara model

Context for Model Evaluation

- Spatial and region-wide effects on conservation value¹
- Spatial and region-wide effects on economic return¹
- Spatial effects on recruitment¹
- Spatial fishing intensity¹
- Connectivity
- Trade-offs (plot of conservation value against economic return)

¹For each model species and a weighted average of all model species